BIM is gaining increasing attention in the field of infrastructure management, both in research and in practice.
Check out the latest paper of Rade Hajdin on the topic
“BIM and BMS: Current Status and Challenges”
which just got published in the latest issue of the e-BrIM magazine.
Abstract:
Bridges are a vital, but also extremely vulnerable part of transportation infrastructure. The design and construction of a bridge have a large influence on its longevity although these phases are short compared to its life span. It is therefore essential that at the acceptance the bridge together with the accurate as-built information is delivered to the owner. A bridge owner relies on as-built high-quality information and on information on a bridge condition to initiate interventions that ensure its safety and serviceability. The information on the bridge condition is obtained through regular inspections as well as monitoring activities. During the lifetime of a bridge, these diagnostic activities may generate a huge amount of data that needs to be managed. With changing environmental actions, accurate and usable information from the inspection and monitoring – in conjunction with as-built data – is essential for efficient and timely maintenance planning.
Inspections and maintenance planning require organized, automated, open and intuitive digital processes, which should consider both object data and related condition data. This seamless digital process is supported by existing Bridge Management Systems but can be vastly improved. In particular, most BMS do not support geometric representation which makes data collection during inspections quite tedious. The introduction of BIM in BMS can substantially facilitate the collection of inspection data and accurately localize monitoring data. Moreover, the exact geometry of bridges can enhance maintenance planning by simulation of the structural behaviour of the as-is structure under different environmental actions. BIM’s incorporation would evolve BMS into a fully digital storage system and a platform for data exchange with existing BIM solutions as well as for maintenance planning that include deterioration forecast, optimization and analysis models. The vision includes 3D+ software and hardware independent data exchange between different software technologies during life span and beyond. Open BIM technology for interoperability from the technical, semantic and organizational points is of main interest. The current status of development and challenges that need to be overcome for the successful fulfilment of the presented vision are discussed.
The paper is available here.